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We present three-dimensional numerical simulations of convection in a low-Prandtl- 
number fluid confined between two infinite horizontal bounding surfaces maintained 
at constant temperatures. We consider the case of free-slip boundary conditions for 
a fluid of Prandtl number Pr = 0.2 and that of rigid boundary conditions with 
Pr = 0.025. In  the former situation, we observe stationary, periodic, biperiodic and 
chaotic regimes as the Rayleigh number is increased. In the later situation, the 
dynamics involves very different characteristic times, and only stationary and 
time-periodic solutions have been simulated. Convergence to the later regime may 
occur after a long transient where the amplitude of the oscillation is slowly 
modulated. 

1. Introduction 
The investigation of convection in low-Prandtl-number fluids may have various 

motivations. These fluids are encountered both in industrial plants (liquid metals) 
and in wtro- and geophysical situations. Furthermore, in connection with the 
development of the theory of dynamical systems, they are well adapted to study 
time-dependent convection : this regime arises as soon as the two-dimensional rolls 
become unstable (oscillatory instability) and temporal chaos occurs at a relatively 
low Rayleigh number when the geometry of the patterns is still simple. In  this 
context, Libchaber & Maurer (1980) investigated experimentally convection in a 
small box of helium (Prandtl number Pr = 0.1) and observed a transition to chaos 
through a sequence of period-doubling bifurcations. Later, experiments were per- 
formed in mercury (Pr = 0.025) by Libchaber, Fauve & Laroche (1983). They inves- 
tigated the effect of a magnetic field parallel to the rolls and observed different routes 
to chaos, depending on the intensity of the magnetic field and on the values of the 
aspect ratios. 
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The influence of lateral boundaries is generally not considered in theoretical or 
numerical investigations where periodicity is often imposed in the horizontal 
direction. On the upper and lower boundaries, the fluid is assumed either to slip freely 
(free-slip boundary conditions) or to be a t  rest (rigid boundary conditions). Rigid 
boundary conditions could appear more realistic, although quantitative comparison 
with experiments may be delicate because of the significant influence of lateral 
boundaries. On the other hand, the relative simplicity of free boundary conditions 
makes this situation more adapted to analytical investigation. 

For free-slip, perfectly conducting overside and underside boundaries, Schluter, 
Lortz & Busse (1965) computed analytically the steady solution corresponding to 
two-dimensional rolls for a Rayleigh number slightly in excess of the onset of 
convection R,. The stability of this solution for low-Prandtl-Number fluids was 
discussed by Busse (1972) who found that these solutions are unstable to an 
oscillatory instability when the Rayleigh number exceeds a value R,,, whose distance 
from R, tends to zero like Pr2. This analysis seems valid when the horizontal periods 
are comparable with the depth of the flow, but has recently been questioned in the 
case where long-wavelength motions are permitted. In this case, the two-dimensional 
rolls may always be unstable a t  sufficiently low Prandtl number (Siggia & Zippelius 
1981 ; Zippelius & Siggia 1982, 1983; Busse & Bolton 1984; Bolton & Busse 1985). 

Rigid boundaries were considered by Clever & Busse (1974). Prescribing an 
horizontal periodicity corresponding to the most unstable wavenumber in this 
geometry (k, = 3.1 17), they computed numerically the steady solution corresponding 
to two-dimensional rolls. They also analysed the linear stability of these solutions 
for three-dimensional disturbances and showed that at  low Prandtl number, the 
dominant instability is the oscillatory instability. A t  Pr = 0.025, this instability 
occurs at R,,, x 1885. More recently, Busse & Clever (1983) investigated the 
stabilizing effect of a magnetic field parallel to the roll axis. 

Numerical simulation of time-dependent convection was first performed in the case 
of two-dimensional flows satisfying free-slip boundary conditions (Moore & Weiss 
1973 and references therein), at Rayleigh number up to 1000 times the critical value 
for the onset of convection. Prandtl numbers as small as 0.01 were considered. 
Two-dimensional oscillatory solutions were observed for Pr > 1. These solutions 
could be physically relevant when an external constraint (like a magnetic field) 
maintains the two-dimensionality, but are otherwise unstable relatively to three- 
dimensional perturbations. 

Three-dimensional numerical simulations of time-dependent convection have been 
reported at moderated Prandtl numbers. For rigid boundary conditions and 
Pr = 0.71, Lipps (1976) observed the onset of steady convection and, at  higher 
Rayleigh numbers, transition to time-dependent regimes with one or two frequencies. 
More recently, McLaughlin & Orszag ( 1982) observed the subsequent transition 
leading to a chaotic regime by a scenario which supports the theory of Ruelle, Takens 
& Newhouse (1982). For free-slip boundary conditions and Prandtl number of order 
one or larger, Curry et al. (1984) made a detailed comparison of convection in two 
and three dimensions. They also discussed the effect of an inadequate spatial 
resolution, which can lead to spurious time-dependence (see also Orszag & Kells 1980; 
Marcus 1981 ; Treve & Mauly 1982). 

In this paper, we use very similar numerical methods to simulate convection in 
low-Prandtl-number fluids, in the two cases of free-slip boundary conditions at  
Pr = 0.2 and rigid boundary conditions at  Pr = 0.025. Our aim is to investigate those 
aspects of transition to time-dependent convection, and eventually to chaos, that are 
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specific to low Prandtl numbers. The effect of a magnetic field parallel to the roll axis 
is also discussed. 

Convection with free-slip boundary conditions at low Prandtl number (PT = 0.1) 
was also considered by Herring & Jackson (1984) but in a different spirit. Using a 
Rayleigh number 70 times critical, they dealt with turbulent convection and focused 
their analysis (in particular comparison of direct simulation and closure calculations) 
on statistical qualities characteristic of developed turbulence. 

R = ag-,' 
V K  

V 

K 
Pr = -, 

Bi d2 Q=- 

2. The dynamical equations 
We consider a horizontal fluid layer confined between two horizontal bounding 

plates and heated from below. The overside and underside planes are assumed to act 
as either rigid or as free-slip perfectly conducting boundaries. Periodicity is assumed 
in the horizontal directions. Let d denote the thickness of the layer. In the s-direction, 
we choose a period L, = 2xd /k ,  corresponding to  the most unstable mode; 
k, = x / 2 / 2  for free-slip boundary conditions and k, = 3.117 for rigid boundary 
conditions. In  the y-direction, we use a period L, = 2 x / k ,  with k, = x / 2 / 2  for free- 
slip conditions and k, = 2.5 for rigid conditions. 

To write the equations of motion in a non-dimensional form, the thickness d of the 
layer is taken as unit length. For the time unit, either the diffusive time d2/K or 
the viscous time d2/v is used. The later unit is useful at low Prandtl number. The 
temperature deviation 8 from the diffusive profile is measured in units of AT or of 
PrAT, where AT is the temperafure difference between the lower and upper 
boundaries. 

In  $7 we briefly consider the effect of an external magnetic field Bo (directed in 
the y-direction) on convection in a low magnetic Prandtl number conducting fluid 
(in mercury, P, x assuming rigid boundary conditions. The induced magnetic 
field b is then weak compared with Bo and can be viewed as a slave variable, prescribed 
by the velocity field. In the limit P,+O, the MHD-Boussinesq equations indeed 
reduce to the following system, where b is measured in unit of B, P,, 8 in units of 
PTAT and t in units of d 2 / v  (Roberts 1967; Sulem, Sulem & Thual 1985): 

t 

av 
at 
-+v'Vv = 

a 8  1 
-+v*V8  = -(V28+w3). 
at P T  

e3 denotes the upward vertical unit vector; w3 is the vertical component of velocity 
v .  The Rayleigh number R, the thermal Prandtl number PT and the Chandrashekhar 
parameter Q are defined as 
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where g is the intensity of the gravity field and po the mass of the unit volume. The 
transport coefficients v, A and K are the kinematic viscosity, the magnetic diffusivity 
and the thermal diffusivity, respectively; a is the coefficient of thermal expansion. 

Boundary conditions must be added to (2 .1) .  On the horizintal boundary planes, 
the temperature deviation from the diffusive profile vanishes together with the 
normal component of the velocity. The tangential velocity component also vanishes 
in the case of rigid boundary conditions, while the tangential stress vanishes in the 
case of free-slip conditions. In addition, the normal component of the current 
j = Curl b vanishes (Roberts 1967). We thus have on the bounding planes z = &;: 

and - = 3 = 0 for free-slip conditions. ( 2 . 4 ~ )  az a2 

or v1 = vz = 0 for rigid conditions. (2.4b) 

It could be suggested that the Boussinesq equations may be simplified in the limit 
of very small (thermal) Prandtl numbers by neglecting the Lagrangian derivative in 
the equation for the temperature fluctuations (2 .1) ,  making the buoyancy force linear 
in the vertical component of the velocity. This approximation may seem analogous 
to that done in the limit of small magnetic Prandtl numbers. The difference is that, 
while in MHD the Lorentz force gives a scale-independent dissipative term, the 
buoyancy force becomes a linear destabilizing term in the large scales which may lead 
to divergence of the solution because the nonlinear terms are not sufficient to stabilize 
the system (J. H. Herring, private communication). This may be related to the fact 
that, at large Rayleigh and small Prandtl numbers, the streamlines of two- 
dimensional convection flow tend to become circular and to coincide approximately 
with the lines of constant vorticity (Clever & Busse 1981 ; Busse & Clever 1981). 

3. Computational techniques 
3.1. Free-slip boundary conditions 

We use a pseudospectral method where velocity and temperature are expanded in 
exponential Fourier series in the horizontal spatial variables and in cosine series (for 
the horizontal components) or sine series (for the vertical velocity component and 
the temperature), in the vertical direction, to take into account the boundary 
conditions (2.3) and ( 2 . 4 ~ ) .  For each of these functions, we have retained 24 modes 
for every horizontal direction and 12 modes for the vertical direction. For the 
Rayleigh numbers that we have considered, this resolution ensures that the trunc- 
ation error is negligible: the excitation of the highest wavenumbers that are retained 
is comparable to the round-off error. 

Concerning time-steps, we use (here t is measured in units of d 2 / K  and 6 in units 
of AT) 

1 (u, An+l- u, An-1 exp ( - 2 k ~ t ) )  = P(IC) (un x wn),+$Re3(&-1 exp (-2kzat) +$$+I) 

(3.1 a )  

+; ($:>l exp (g &T) + $:T). (3.1 b )  
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This leap-frog scheme is stabilized by occasionally mixing three successive time-steps. 
In (3 .1)  the circumflex denotes Fourier transforms. The velocity u has components 
(w1,v2,v3) and o = Curlu is the vorticity. P(k) is the projector on the space of 
solenoidal functions. To compute the nonlinear terms, differentiations are made on 
the Fourier space and multiplications in the physical space. 

3.2. Rigid boundary conditions 

We use a pseudospectral method where velocity, magnetic field and temperature are 
expanded in exponential Fourier series in the horizontal directions and in Chebyshev 
polynomial series in the vertical direction. We write 

N 
8 ( x , y , z , t )  = E E Z 8,,,(t) exp 2i71 -+- Tn(2z), (3.2) 

IZI<+L Irnl<BM n-0 ( (: z)) 
and similar expressions for the other fields. We use the resolutions 
(L = 16, M = 10, N = 33) and ( L  = 16,M = 16, N = 33). 

The temporal scheme is second order Adams-Bashforth-Crank-Nicolson, of the 
form (same units as in (2 .1))  

The nonlinear terms are computed by collocation. The advective term u*Vu is 
actually replaced by 

l a  l a  a a 
- - (v, - vz) +- - (v2- v3)  + - (v ,  v3)  + - (vl v3) 3 ax 3 aY aY 32 

in the equation for &,/at and by analogous expressions obtained by cyclic permu- 
tations in the equations for av,/at and av,/at. The pressure p must then be replaced 
byp++P. By this method (Basdevant 1983) 8 Fourier transforms are needed instead 
of the 9 transforms required when the representation u*Vu or o x u is retained. Indeed, 
instead of computing the derivatives of v?, vi and v: separately, one computes those 
of v: - vi and vi - vg. The derivative of (vi - v:) is obtained from their differences. 

Time marching is done in spectral space using a tau-method (Gottlieb & Orszag 
1977). The incompressibility condition ( 3 . 2 ~ )  leads to a Laplace equation for the 
pressure when we take the divergence of ( 3 . 2 ~ ) .  The resulting system for un+l, bn+' 
and p is solved as in Kleiser & Schumann (1979) by prescribing beyond (2 .3)  and 
(2.4b), V0un+l = 0 for z = = +I. as an additional boundary condition required to 
compute the pressure. This condition ensures an exact preservation of the flow 
incompressibility by the temporal discretization. A similar method, referred to as the 
Green function method wa used by Marcus, Orszag & Patera (1984). Technical details 
can be found in Sulem et al. (1985) where preliminary results have been reported in 
the case of rigid boundary conditions. 
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4. Comparison with previous two-dimensional computations 
4.1. Free-slip boundary conditions 

It is well known that when the Rayleigh number exceeds the critical value 
R, = 277c4/4, disturbances of wavenumber k, = ~ / 4 2  are amplified and convection 
occurs (Chandrashekhar 1961). Using a perturbative expansion in terms of R -  R,, 
Schluter et al. (1965) showed that near the threshold, only two-dimensional solutions 
are stable. They can be represented (in diffusive units) by 

\ v1 = Akin: sink,z sinnz+O(A2), 

v2 = 0, 

v3 = A: cos k, sin 7cz + O(A2), 

A P r A  k; 8 = - (n2+ki)  C O S ~ , ~  sin7cz--(7c2+ki)-sinnz+O(A2), R R 47c 

with 
~ B ( R -  R,)! 

k,(7c2 + k;) ' 

A =  

To test our code we have reproduced this steady two-dimensional regime, by solving 
numerically the time-dependent three-dimensional equation. Table 1 gives the 
maximum of the velocity and of the temperature derivative from the diffusive profile 
as predicted by Schluter et al. (1965) and the value obtained numerically for 
k, = 71/42 at different Rayleigh and Prandtl numbers. A very good agreement is 
obtained. 

It is of interest to  notice that for free-slip boundary conditions, the stability of the 
two-dimensional rolls that we have obtained a t  Prandtl number Pr = 0.2 is due to 
the small aspect ratios of the periodicity intervals that we have used. As shown by 
Busse & Bolton (1984) and Bolton & Busse (1985), in an infinite domain, convective 
rolls with critical wavenumber k, = 7 1 / 4 2  are unstable a t  Pr < 0.543, under the 
action of long-wavelength instabilities which are here suppressed. 

Another comparison concerns the variation of the Nusselt number with the 
Rayleigh number. At Prandtl number Pr = 1 ,  Moore & Weiss (1973) obtained the 
empirical law 

0.385 

Nu = 1.9(:) (4.2) 

in the domain 5 < R / R ,  < 1000 on the basis of two-dimensional simulations. I n  
figure 1, this scaling law is represented by the solid line. The dots are the values that 
we have obtained in three-dimensional calculations with a resolution of 48 x 48 x 24 
Fourier modes. It is remarkable that the agreement between two- and three- 
dimensional calculations is excellent at least up t o  R x 80R,. The last point at 100R, 
is below the curve. It is however difficult to assert that  this slight discrepancy is due 
to three-dimensional effects, since 100R, is a t  the limit of the Rayleigh numbers we 
can safely simulate with the above resolution. Note that a simple dimensional 
argument (Spiegel 1971) gives N u  - @ for moderate or large Prandtl numbers. The 
fact that  the space dimensionality does not play any role in this argument can explain 
the good agreement obtained with two-dimensional computations. 
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R = 665 R = 661 R = 680 
Pr = 0.025 Pr = 0.1 Pr = 0.1 

Vmax amax "Jmax amax Vmax amax 

Asymptotic analysis 1.642 0.0776 1.121 0.0532 2.846 0.131 
Numerical calculation 1.65 0.078 1.126 0.0535 2.8 0.131 

TABLE 1. Free-slip boundary conditions: comparison of the maximum velocity and maximum 
temperature deviation from the diffusive profile given by the asymptotic analysis of Schliiter et al. 
(1965) and by our numerical simulations (in diffusive units) 

109 1 
t j 

1 0 0  10' 101 103 

RIRC 

FIQURE 1. Free-slip boundary conditions, Pr = 1 : Rayleigh-number dependence of the Nusselt 
number. The solid line is the scaling law (4.2). The dots are our results at a resolution of 48 x 48 x 24. 

Rayleigh 2 R-R, Nusselt 
number (thermal units) number 

1 800 1.88 x 10-3 1.0077 
1900 3.38 x 10-3 1.0286 
2000 4.83 x 10-3 1 .Of306 
3000 0.11 1.435 

TABLE 2. Rigid boundary conditions: kinetic energy of the rolls and Nusselt number as a function 
of the Rayleigh number for steady two-dimensional convection at Pr = 0.025 and k, = 3.117. The 
same definitions and units as in Clever & Busse (1974) have been used. For R = 1900,2000,3000, 
the two-dimensional rolls are only stable in the presence of a sufficiently strong magnetic field 
parallel to the rolls. 

4.2. Rigid bounda y conditions 
In this geometry, convection occurs when the Rayleigh number exceeds the critical 
value R, = 1708, for which disturbances of wavenumber k, = 3.117 are amplified, 
leading to a steady state where the convective patterns are two-dimensional rolls. 

This steady two-dimensional solution was computed numerically by Clever & Busse 
(1974,1981) and Busse & Clever (1981) for different values of the roll wavelength and 
of the Rayleigh and Prandtl numbers. We have reproduced some of their results. To 
make quantitative comparison, we have computed (see table 2) the kinetic energy 
of the rolls and the Nusselt number (the ratio of the convective to the diffusive heat 
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FIGURE 2. Free-slip boundary conditions, Pr = 0.2, R = 800. Time evolution (in diffusion time 
units) of ( a )  temperature 9 and ( b )  velocity component v2 in the roll direction at the point ( l , l , i )  
after a first transient. (c) Horizontal componentof the velocity at the lower boundary when the 
solution is time periodic. (d) : same as (c) 20 diffusion times later. 

transfer). The values that we have obtained are exactly on the curves presented in 
figure 2 of Clever & Busse (1974) and on figure 11 of Clever & Busse (1981). An 
agreeement of better than 0.1 % is obtained with the Nusselt numbers listed in table 1 
of Clever & Busse (1974). 

5. Time-dependent convection with free-slip boundary conditions (Pr = 0.2) 
When the Rayleigh number is increased, the two-dimensional rolls may become 

unstable. For low Prandtl numbers, the dominant effect is due to the inertial term 
u s  Vu which couples vertical vorticity modes with basic two-dimensional rolls and 
generates the oscillatory instability. This instability corresponds to a wave propa- 
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FIQTJRE 4. Free-slip boundary conditions, Pr = 0.2 : transition to a. two-frequency regime when 
R is abruptly increased from 820 to 850. 

gating in the direction of the rolls. Under the conditions we have considered, we find 
that the threshold R,,, is located in the range 700 < R,,, < 710: For R = 700, we 
find that the two-dimensional rolls are stable while for R = 710, we observe the 
development of the instability and its saturation leading to a time-periodic solution. 
When the Rayleigh number is abruptly increased from R = 700 to 710, the tem- 
perature at a given point starts to oscillate in time, with a period of the order of the 
heat diffusion time. Similar behaviour is observed for the velocity components. In 
physical space, a travelling wave (of small amplitude because of the vicinity of R,,,) 
is seen to propagate along the rolls. 

When the Rayleigh number is increased to R = 800, the solution is again 
asymptotically time periodic. Nevertheless, after a fist transient during which the 
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FIGURE 5. Free-slip boundary conditions, Pr = 0.2 : almost-locked two-frequency regime 
(f,/f, = 4.090) which establishes at R = 850: (a) temperature at the point (1, 1 , f )  versus time and 
(a) its temporal Fourier spectrum; (c) velocity component v2 in the roll direction at the same point 
and (d )  its temporal Fourier spectrum. 

system adjusts itself to the new value of the Rayleigh number, we observe that during 
a relatively long time interval, the amplitude of the oscillation is slowly modulated, 
with a characteristic timescale that is about 30 times longer than the oscillation 
period (figure 2a, b ) .  A similar phenomenon is also present in the case of rigid 
boundary conditions (see $6). In this case, the modulation has been reproduced in 
a model derived from phase-dynamics analysis (Brachet & Fauve 1987). Figure 2 (c, d )  
shows the roll oscillations in the physical space. 

A very similar evolution is observed at  R = 820. Figure 3 shows the velocity field 
((vl v,)-components and isotachs of v2) in the plane y = 0. Note that the vertical 
oscillation of the rolls persists when the solution has become time-periodic. 

A qualitatively different regime is observed when the Rayleigh number is abruptly 
increased from R = 820 to 850 (figure 4). There is a first period of time where the 
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FIQURE 6. Free-slip boundary conditions, Pr = 0.2: Two-frequency regime (fi/fi x 4.17) which 

eetablishes at R = 900. (d) as in figure 5. 

system oscillates periodically with a frequencyf, like at R = 820. It then makes a 
sharp transition to a regime characterized by two frequenciesf, andf, which are 
almost locked: fi/fz x 4.090. Note that f, is dominant in the temperature, while fi 
is dominant in the velocity component vg (figure 5) .  

When the Rayleigh number is increased to R = 900, we still observe a bi-periodic 
regime (figure 6), the ratio of the frequencies being nowfl/fz k: 4.17. 

Finally, when the Rayleigh number reaches R = 925, we observe a chaotic regime 
characterized by a broad continuous spectrum (figure 7). Note the presence of the 
frequency if,. This suggests that the transition to turbulence by increasing the 
Rayleigh number could result from the interruption of a doubling cascade of tori after 
a finite number of steps. This number can even be reduced to unity as in the 
Ginsburg-Landau equation (Kuramoto & Koga 1982; Moon, Huerre & Redekopp 
1983; Keefe 1985), and in a seven-mode truncation of the incompressible Navier- 
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FIGURE 7. Free-slip boundary conditions, Pr = 0.2: Chaotic regime which establishes at 

R = 925. (a-d) as in figure 5. 

Stokes equation (Franceschini 1983). In these examples, direct transition from a 
bi-periodic to a chaotic regime occurs when one of the frequency has undergone a 
simple period-doubling bifurcation. This incomplete cascade was shown to be a 
generic scenario when a system that would undergo an infinite cascade is coupled with 
an oscillator of different frequency (Arneodo, Coullet & Spiegel 1983; Argoul & 
Arneodo 1984). To clarify the relevance of this scenario to the dynamics observed 
in our simulations, more detailed analysis such as Poincarh sections would be 
required. 

We finally note that comparison of figures 2,5,  6 and 7 shows that the frequency 
of the oscillations increases with the Rayleigh number, a phenomenon also observed 
with rigid boundary conditions ($6 and Clever & Busse 1986). 

The transition from periodic to  chaotic dynamics is visualized in figure 8 where the 
temperature at the point (l , l , i)  is plotted versus the velocity component w2 in the 
roll direction at the same point, for Rayleigh numbers of 800, 850, 900 and 925. 
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FIQIJRE 8. Temperature 9 at the point (1,  1, t )  versus velocity component vz in the roll direction 
at the same point for Rayleigh numbers (a) 800, (6) 850, (c) 900, (d )  925. 

6. The oscillatory instability for rigid boundary conditions (Pr = 0.025) 
The two-dimensional rolls with basic wavenumber k, = 3.117 described in $4.2 

become unstable to three-dimensional disturbances a t  a Rayleigh number R,,, which 
strongly depends on the Prandtl number and varies slowly with the wavenumber ku 
of the perturbations (Clever & Busse 1974, 1981 ; Busse & Clever 1981). In  the case 
Pr = 0.025 and k, = 2.5 that we consider here, the threshold is Rose x 1885 (Busse 
& Clever 1983). 

We start with the steady solution corresponding to two-dimensional rolls at 
R = 2000 and we destabilize it by mean of random disturbances. We measure the 
temperature deviation from the diffusive profile at  a given point of the flow, as a 
function of time. We first observe a linear oscillatory regime where the amplitude 
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7.- 

0 

(4 (9 

FIGURE 9. Rigid boundary conditions, Pr = 0.025, R = 2000: (a) (wl, w,)-velocity components and 
isotachs of w8 in the plane z = i, (b )  (q, w,)-velocity components and isotachs of v2 in the plane 
y = iLv, (c) vorticity component in the roll direction in the plane y = iLLy. (i) Time = 1.5, (ii) 4.5. 
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FIGURE 10. Rigid boundary conditions, Pr = 0.025, R = 1925: temperature 9 at the point 
(fL,,fL,,f) versus time for (a) 1 < t < 14 and (a) 14 < t < 27. wa component of the velocity at the 
same point versus time for (c) 1 < t < 14 and (d) 14 < t < 27. 

grows exponentially. The period of the oscillation To,, is about 0.065 viscous time 
units or equivalently 2.6 thermal diffusion time units. This corresponds to a frequency 
cr,,, = 2n/T,,, m 2.4 in thermal units, in agreement with figure 12 of Clever & Busse 
(1974). At later time, around t = 1.5, we see a nonlinear saturation of the amplitude. 
The computation, performed up to t = 5 (viscous units) shows a strong modulation 
of the amplitude on a characteristic time of about 3 viscous units. A much longer 
integration would be necessary to characterize the asymptotic behaviour. Figure 9 
represents the velocity field and the vorticity component in the roll direction at 
R = 2000 at two different instants of time. Strong oscillations of the rolls are visible. 
As noticed by M. E. Brachet (private communication) the velocity field in a vertical 
plane (figure 9(b)(i), (ii)) looks very similar to that observed at the onset of the 
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FIQURE 11.  Rigid boundary conditions, Pr = 0.025: temperature fluctuations 6 versus v, 
velocity component for 0 < t < 18. 

secondary instability in a plane shear flow (Brachet et al. 1985). We also note that 
the rolls display vertical undulations (figure 9(c) (i), (ii)). 

A long calculation was done at R = 1925 where the integration waa performed 
during 28 viscous time units (or equivalently 1120 thermal diffusive units) starting 
from the three-dimensional solution for R = 1950 at a given instant of time. This 
permits us to observe several extrema for the amplitude of the modulation (figure 10). 
We observe that the maxima of the modulation decrease regularly while the minima 
increase. If we extrapolate this behaviour, we can conjecture that the solution will 
eventually become time-periodic, but the relaxation time is very long. As already 
noticed, a similar slowly damped modulation has been observed, with an amplitude 
equation obtained by phase-dynamics analysis, to describe the oscillatory instability 
andits nonlinear saturation (M. E. Brachet & S. Fauve 1987, private communication). 
More quantitative comparisons are underway. In the plane (9, v2), we again obtain 
an ellipse which precesses, as in the similar regime with free-slip boundary conditions 
(figure 1 1 ) .  

Figure 12 shows the velocity and vorticity in physical space. The main observation 
is that the rolls oscillate not only horizontally but also vertically. When the Rayleigh 
number is reduced to R = 1900, we observe a weak and slow modulation. During the 
period 0 < t < 9 (viscous units) during which the computation was performed, the 
amplitude of the oscillation of the velocity in the roll direction is increasing while 
that of the temperature is decreasing. At  R = 1985, in contrast, the amplitude relaxes 
exponentially to a constant, leading to a time-periodic solution (figure 13). 

Finally when the Rayleigh number is decreased to R = 1880, the oscillation of the 
rolls is exponentially damped. This indicates that in the conditions we have 
considered 1880 < R,,, < 1895, in agreement with the analysis of Busse & Clever 
(1983). 

The onset of roll oscillations has experimentally been observed to reduce the 
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FIQURE 13. Rigid boundary conditions Pr = 0.025, R = 1895: velocity component in the roll 
direction at  the point (&,fL,,a) as a function of time. 

convective heat transfer as measured by the Nusselt number, especially at  low 
Prandtl number (Rossby 1969; Krishnamurti 1973 ; Maeno, Hauche & Wheatley 
1985). This effect, which has been investigated numerically by Clever & Busse (1986), 
is also visible in our direct simulations. For example, at R = 2000, the Nusselt number 
is Nu x 1.0606 for the two-dimensional solution while it oscillates between 1.0272 
and 1.0304 for the three-dimensional solution. At R = 1900, Nu = 1.0286 for the 
two-dimensional solution and oscillates between 1.0270 and 1.0272 for the three- 
dimensional solution. As expected from symmetry arguments, the oscillation fre- 
quency of the Nusselt number is twice the basic oscillatory frequency of the roll. 

7. Influence of a magnetic field parallel to the roll axis 
As indicated by the linear analysis of Busse & Clever (1983), the stability region 

of the two-dimensional solution is enhanced by the presence of a magnetic field 
parallel to the roll axis. Like Busse t Clever (1983), we consider this problem for the 
case of rigid boundary conditions. As previously, Pr = 0.025, k, = 3.117 and 
k, = 2.5. 

When a time-dependent flow at R = 1900 is abruptly subjected to a magnetic field 
corresponding to a Chandrashekhar number Q = 50, the oscillations are immediately 
suppressed. When Q = 5 ,  we observe an essentially exponential decay of the 
amplitude of the oscillation without sizeable change in the frequency (figure 14). 
When starting with the same conditions, the external magnetic field corresponds to 
Q = 0.3125, the solution relaxes exponentially to a time-periodic solution (figure 14). 
This indicates that the onset of the amplitude modulation requires larger Rayleigh 
numbers in the presence of a magnetic field. Figure 15 displays the evolution of the 
temperature and velocity for R = 2000 and Q = 5. In this case the magnetic field is 
not sufficient to suppress the modulation. 
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FIGURE 14. Rigid boundary conditions, Pr = 0.025: velocity in the roll direction versus time at 
R = 1900 in the presence of a magnetic field at the point (fL,, &,, t )  : (a) Q = 5, (b)  0.3125. 
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FIGURE 15. Rigid boundary conditions, Pr = 0.025, R = 2000 and Q = 5:  (a) velocity in the roll 
direction and (b )  temperature fluctuations at point (+Lz, &,, +) versus time. 
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We notice that for the oscillatory regime which is established for R = 1900 and 
Q = 0.3125, the Nusselt number oscillates between 1.0279 and 1.0280, values located 
between the Nusselt number of the two-dimensional solution and that of the 
three-dimensional solution for Q = 0. Similarly for R = 2000 and Q = 5 ,  the Nusselt 
number oscillates between 1.0455 and 1.0473, again between the values of the Nusselt 
of the two-dimensional solution and of the three-dimensional solution for Q = 0. 
Similar observations are made for other values of the parameters: for R = 1950 and 
Q = 5, Nu x 1.0436 (very small oscillations) while 1.0268 < Nu < 1.0286 for Q = 0. 
This clearly indicates that the inhibition of the oscillation by the magnetic field 
increases the convective heat transport. 

In  conclusion, for the Rayleigh numbers and the geometry that we have considered, 
a magnetic field in the roll direction produces no drastic modification of the dynamics. 
It inhibits the oscillation of the rolls and its effect may thus be viewed as essentially 
equivalent to a reduction of the Rayleigh number. In particular, we have not seen 
the onset of new bifurcations. The reason is probably that all the computations were 
done at Rayleigh numbers not larger than 1.2R,. In this range of parameters, 
time-dependent solutions can persist only for very moderate Chandrashekhar num- 
bers. We cannot exclude the possibility that, as in the experiments, new scenarios 
would occur a t  sensibly larger Rayleigh and Chandrashekhar numbers, but such 
simulations would require larger computational power, since the resolution has to be 
increased accordingly. 

8. Concluding remarks 
One of the main difficulties in the numerical simulation of convection at very small 

Prandtl number is the high rotation velocity of the fluid particles. This imposes a 
drastic constraint on the time-step to ensure stability when an explicit scheme is used 
for the (nonlinear) advection terms. This makes calculations at  high Rayleigh numbers 
prohibitively expensive in computer time, more especially as the spatial resolution 
has to be increased with the Rayleigh number, which also requires a reduction of the 
time-step. Furthermore, the transients appear to be extremely long. As a conse- 
quence, we have only simulated the first time-dependent regimes in the case of 
rigid boundary conditions at  Pr = 0.025. 

From this point of view, the situation was better in the simulation that we did with 
free-slip conditions, probably because we used a sensibly larger Prandtl number 
(Pr = 0.2). In  this case, we observed a transition to chaos from a biperiodic regime 
with a single period-doubling bifurcation. It is of interest to notice that in the 
numerical simulations (which all assume periodicity in the horizontal direction), a 
complete cascade of period doubling was not observed. This suggests that in the 
experiments in helium (Libchaber & Maurer 1980) or in mercury (Libchaber et al. 
1983), where this scenario was observed, an important role is played by the 
boundaries. 

Note that in both the computations we have found an oscillatory solution with an 
amplitude that is slowly modulated. In  the computations reported here this 
modulation is subcritical in the sense that it is eventually damped, the system 
relaxing to a purely periodic solution. This transient is however much longer in the 
case of rigid boundary conditions. It is quite possible that for slightly different values 
of the parameters, this modulation would be persistent, leading to a mode-softening 
transition to chaos as observed experimentally by Libchaber et al. (1983) in the 
presence of a magnetic field or even in its absence (S. Fauve, private communications). 

7-2 
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Such a modulation was also observed by Curry el al. (1984) in simulations of two- 
dimensional convective flows and has been measured in the wake of a circular cylinder 
at Reynolds number Re = 66 (Sreenivasan 1985). 
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stages of this work. We also acknowledge many helpful conversations with A. 
Arneodo, M. E. Brachet, P. Coullet, U. Frisch, J. Herring, P. Huerre, A. Libchaber, 
S. A. Orszag and E. Spiegel. The computations were done on the CRAYlS of the 
Centre de Calcul Vectoriel pour la Recherche (Palaiseau), using the fast Fourier 
transforms of S. A. Orszag and C. Temperton, and the NCAR Graphic Software. We 
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